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Abstract

Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote

sensing is expected to help address. However, carbon storage in moderate to high biomass forests is difficult to estimate with conventional

optical or radar sensors. Lidar (light detection and ranging) instruments measure the vertical structure of forests and thus hold great promise

for remotely sensing the quantity and spatial organization of forest biomass. In this study, we compare the relationships between lidar-

measured canopy structure and coincident field measurements of forest stand structure at five locations in the Pacific Northwest of the U.S.A.

with contrasting composition. Coefficient of determination values (r2) ranged between 41% and 96%. Correlations for two important

variables, LAI (81%) and aboveground biomass (92%), were noteworthy, as was the fact that neither variable showed an asymptotic

response.

Of the 17 stand structure variables considered in this study, we were able to develop eight equations that were valid for all sites, including

equations for two variables generally considered to be highly important (aboveground biomass and leaf area index). The other six equations

that were valid for all sites were either related to height (which is most directly measured by lidar) or diameter at breast height (which should

be closely related to height). Four additional equations (a total of 12) were applicable to all sites where either Douglas-fir (Pseudotsuga

menziesii), western hemlock (Tsuga heterophylla) or Sitka spruce (Picea sitchensi) were dominant. Stand structure variables in sites

dominated by true firs (Abies sp.) or ponderosa pine (Pinus ponderosa) had biases when predicted by these four additional equations.

Productivity-related variables describing the edaphic, climatic and topographic environment of the sites where available for every regression,

but only two of the 17 equations (maximum diameter at breast height, stem density) incorporated them. Given the wide range of these

environmental conditions sampled, we conclude that the prediction of stand structure is largely independent of environmental conditions in

this study area.

Most studies of lidar remote sensing for predicting stand structure have depended on intensive data collections within a relatively small

study area. This study indicates that the relationships between many stand structure indices and lidar measured canopy structure have

generality at the regional scale. This finding, if replicated in other regions, would suggest that mapping of stand structure using lidar may be

accomplished by distributing field sites extensively over a region, thus reducing the overall inventory effort required.
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1. Introduction

Accurate estimates of terrestrial carbon storage are

required to determine its role in the global carbon cycle,

to estimate the degree that anthropogenic disturbance (i.e.,

land use/land cover change) is altering that cycle, and to
ent 95 (2005) 532–548
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monitor mitigation efforts that rely on carbon sequestration

through reforestation. Remote sensing has been a key

technology in existing efforts to monitor carbon storage

and fluxes (Cohen et al., 1996; Running et al., 1999) and

has been identified as an essential tool for monitoring

compliance with treaties such as the Kyoto protocol (Ahern

et al., 1998).

However, direct estimation of carbon storage in moderate

to high biomass forests remains a difficult task for remote

sensing. While remote sensing has had considerable success

in measuring the biophysical characteristics of vegetation in

areas where plant canopy cover is relatively sparse,

quantification of vegetation structure where leaf area index

(LAI) exceeds three has been less successful (Carlson &

Ripley, 1997; Turner et al., 1999; Waring et al., 1995). High

LAI forests, which generally have high aboveground

biomass, occur in boreal, temperate and tropical regions.

These forests cover less than 35% of the Earth’s terrestrial

surface, yet account for 67% of terrestrial net primary

productivity (NPP) and 89% of terrestrial biomass (Waring

& Schlesinger, 1985). Given their prominent role in global

biogeochemistry and the likelihood that these high produc-

tivity areas will be prime areas for carbon sequestration

efforts, better estimates of carbon storage in high biomass

forests is desirable.

One promising remote sensing technique is lidar. Lidar

instruments directly measure the vertical structure of

vegetation by determining the distance between the sensor

and a target through the precise measurement of the time

elapsed between the emission of a pulse of laser light from

the sensor and the detection of that light pulse reflected from

the target. Waveform-recording lidar systems, such as the

SLICER (Scanning Lidar Imager of Canopies by Echo

Recovery) instrument used in this work (Blair et al., 1994;

Harding et al., 1994; Harding et al., 2001) and the Laser

Vegetation Imaging System (LVIS, Blair & Hofton, 1999)

measure the time-resolved amount of laser energy reflected

from the many surfaces of a geometrically complex target.

The distribution of return energy reflected from a vegetation

surface, the lidar waveform, records the vertical distribution

of illuminated vegetation and soil surfaces from the top of

the canopy to the ground. For forests, a primary research

goal has been relating these waveforms to conventional,

primarily non-spatial, measurements of forest structure, such

as aboveground biomass and stand basal area (Drake et al.,

2002; Lefsky et al., 1999a,b; Lefsky et al., 2002; Means et

al., 1999). In this study, we compare the relationships

between lidar-measured canopy structure and coincident

field measurements of aboveground biomass at five

locations in the Pacific Northwest of the U.S.A., each with

contrasting environmental conditions, productivity and

species composition.

The goal of this work is to test the potential for regionally

applicable relationships between lidar estimates of canopy

structure and field estimates of stand structure. Five

methods are evaluated for their ability to create unbiased
regression equations that apply to all sites. Knowledge of

the generality of these equations will help determine the

effort and expense required to develop global forest

structure estimates, including aboveground biomass, from

lidar data.

In this study we:

1. Describe the intersite variability of relationships predict-

ing forest stand structure from lidar estimated canopy

structure.

2. Test the ability of environmental data to account for

intersite biases.

3. Determine optimal methods for regression of multiple

stand structure variables against multiple canopy struc-

ture indices.

2. Methods

2.1. Study areas

Field data were collected in five locations, selected to

sample the maximum practicable range of environment

conditions and forest composition in the Pacific-Northwest

region of the United States. Considering only the forested

areas of Washington and Oregon, our sites covered 71.4% of

the variation in precipitation and 77.6% of the variation in

mean annual temperature. Tree composition at these sites

reflects climate and edaphic variability, potential vegetation

type (PVT), and past and present management practices in

Pacific Northwest forests (Franklin & Dyrness, 1988).

Cascade Head (CASCH), the most productive site, is

dominated by Picea sitchensi (Sitka spruce) and Tsuga

heterophylla (western hemlock). Both the Coast Range

(COAST) forest and H.J. Andrews (HJA) sites are predom-

inately Pseudotsuga menziesii (Douglas-fir), with signifi-

cant T. heterophylla (western hemlock) at HJA, and

abundant Alnus rubra (red alder) in the understory of the

coastal forest. The plots at Mt. Rainier (RAIN) are all above

1300 m elevation and their composition is largely made up

of a variety of btrueQ firs: Abies amabilis (Pacific silver fir),
Abies lasiocarpa (sub-alpine fir), and Abies procera (noble

fir) as well a number of other species, including Chameo-

cyparis nootkatensis (Alaskan cedar), T. heterophylla, and

T. mertensiana (mountain hemlock). The Metolious

Research Natural Area (MRNA) on the east side of the

Cascade Range near Sisters, Oregon, is dominated by Pinus

ponderosa (Ponderosa Pine), which accounts for 88% of

basal area. Further description of the study areas are

available in (Lefsky et al. in review A).

2.2. Field measurements

Field sampling was carried out in 1996 for H.J. Andrews,

1998 for Metolius, 1999 for Cascade Head and Coast Range,

and 2000 for Mt. Rainier. Eighty-four 0.25 ha field plots
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were established beneath SLICER transects flown in 1995;

most plots were associated with a five-by-five array of

SLICER footprints. Only forested sites were sampled, using

a nested plot design that recorded species, diameter at breast

height (DBH), and crown ratio (the proportion of the bole

with live crown) for all trees, and tree height for a subset of

trees. Plot level estimates of leaf area index were predicted

using species-specific equations from sapwood area or

diameter at breast height, depending on species (Lefsky et

al. in Review).

Total aboveground biomass was estimated from DBH

and height using allometric equations generated from a

dataset of tree volumes collected in 18 different protected

areas and experimental forests throughout the Pacific

Northwest and Colorado (Lefsky et al. in review A). The

Schumacher equation (Schumacher & Hall, 1933), which

uses both the height and diameter of trees to predict stem

volume, was adopted to avoid minimizing the effects of site

productivity on estimates of aboveground biomass at each

site. To generate heights for trees which did not have tree

height measurements, we used an imputation procedure

(Moeur & Stage, 1995) to select most similar trees from a

database of over 300,000 trees combined from the Current

Vegetation Survey and Forest Inventory Analysis data bases,

which all had measured heights. More details on the field

measurements are available in (Lefsky et al. in review A).

2.3. SLICER measurements and data analysis

Lidar waveforms were collected by the SLICER instru-

ment in September 1995. SLICER is a modified scanning

version of a profiling laser altimeter developed at Goddard

Space Flight Center (Blair et al., 1994). The SLICER system

digitizes the entire height-varying return laser power signal,

or waveform, from the upper-most canopy surface to the

ground. Four approaches were employed for the description

of canopy structure, each implemented using data from the

SLICER instrument. The most basic method of canopy

description, canopy surface height measurements, only used

the instrument’s height measuring capability. A second set

of measurements was made by transforming the raw

waveform data into an estimate of the vertical distribution

of the canopy—the canopy height profile (CHP). A third set

of measurements described the transmittance of light in the

canopy (Parker et al., 2001). A fourth was derived from a

system for the measurement of canopy structure, the canopy

volume method (CVM), which summarizes the total volume

and spatial organization of filled and empty space within the

canopy. Details of these methods can be found in Lefsky et

al. (1999a) and Lefsky et al. (in review A).

2.4. Statistical analysis

2.4.1. Canonical correlation analysis

Ordinary least square (OLS) regression methods have

both simple (single X) and multiple (several X) forms (Steel
& Torrie, 1980). The use of OLS regression in its single Y

on multiple X form is familiar to most remote sensing

analysts conducting regression modeling. Although much

less familiar, there are also multiple regression methods for

relating datasets with multiple X and Y variables (Brown,

1979). One form, Canonical Correlation Analysis (CCA,

SAS Institute, 1990), is a generalized form of multiple

regression that permits the examination of interrelationships

between two sets of variables (multiple X’s and multiple

Y’s) (Tabachnick & Fidell, 1989), and its applicability in

remote sensing is demonstrated and described in detail by

Cohen et al. (2003). CCA maximizes the correlation

between a composite of variables from one set with a

composite of variables from another set. The advantage of

CCA is that it quantifies the redundancy in each set of

variables. This, in turn, allows us to group both X and Y

variables in terms of their relationships to other variables

within their own dataset and the other. In addition, when

there is only one Y (e.g. LAI), CCA provides a set of

coefficients for the X’s that aligns them with the variation in

the Y variable. However, CCA does not scale the resulting

variable according to the units of the dependent variable, a

step that in this analysis was performed using Reduced

Major Axis regression.

2.4.2. Reduced major axis regression

Reduced major axis regression (RMA) is one of a class

of similar models variously known as orthogonal regression,

total least squares regression, or errors-in-variables model-

ing (Van Huffel, 1997). Orthogonal regression minimizes

the sum of squared orthogonal distances from measurement

points to the model function. Besides making no assump-

tions about errors in X and Y, RMA likewise makes no

assumptions about dependency. Conrad and Gutmann

(1996) refer to RMA as geometric mean regression, in that

the slope is defined as the ratio of sample standard deviation

for Y over the sample standard deviation for X, thus

preserving in the model the relative variance structure of the

sample dataset. The effect is to minimize or eliminate any

attenuation or amplification of predictions. Mathematical

similarities in the formulations of OLS and RMA regression

models mean that the model intercepts are all equivalent, as

are the coefficients of determination. What differ among

these models are the root mean square errors (RMSEs) and

the slopes of the relationships.

Bootstrapping was used to provide robust estimates of

three parameters in this analysis: R2 and the 95%

confidence intervals of the slope and intercept parameters.

Random subsets of the same size as the full dataset were

drawn, with replacement, from the full dataset of plots.

For each subset, 10,000 iterations were used to estimate

the three parameters. From these estimates, mean values

were determined, and the 95% confidence intervals were

identified as the 500th and 9500th values in the sorted

sequence of the slope and intercept arrays. These intervals

were subsequently used to determine if the slope or
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intercept was significantly different from an identity

relationship (ie. slope=1 and intercept=0).

In comparing the R2 estimates from RMA to results from

stepwise regression alone, it was noted that RMA consis-

tently produced higher values. However, it was established

that the comparison was faulty—the stepwise regression

results were (appropriately) adjusted R2 values, and thus

were corrected for potential model overfit due to the large

number of independent variables. This potential model

overfit would exist in any case when a large number of

independent variables are being used to model a single

dependent variable, even when the independent variables

are summarized as a single index. Therefore, R2 values from

the CCA were adjusted following Healy (1984),

adjR2 ¼ 1� n� 1

n� m� 1
1� R2
� �

ð1Þ

where n is the number of observations, m is the number of

independent variables, and R is the raw multiple correlation

coefficient.

2.4.3. Roadmap for statistical analyses

Three sets of statistical analyses were performed. The

first set of analyses compared three methods for relating

lidar-measured canopy structure and field-measured stand

structure. The second set of analyses tested the ability of

environmental (topographic, climate and edaphic) indices to

explain the residuals from the first set of regression

analyses. Finally, variables derived from a canonical

correlation analysis of environmental variables were added

to the original regression datasets, and regressions were

recalculated.

The first statistical analysis had three steps. First a CCA

was performed to document patterns of variance and

covariance in the lidar and stand structure datasets (this

analysis is detailed in Lefsky et al. in review). Second, the

three regression methods were compared to pick one that

was most appropriate for estimating the multivariate

relationships between lidar estimates of canopy structure

and field measurements of stand structure. The regression

methods used were 1) direct stepwise multiple regression

with canopy structure variables (e.g. direct stepwise) which

was used as a reference, 2) direct CCA with canopy

structure variables (e.g. direct CCA) and 3) stepwise

multiple regression with canonical variables (referred to

here as SCV). The difference between direct CCA and SCV

is that in the former, the CCA is performed with a single

dependant variable (the stand structure index of interest) as

in Cohen et al. (2003), whereas, in SCV, the multiple

canonical variables derived from the canopy structure

dataset are combined using stepwise multiple regression to

predict the dependant variable. Third, as in Cohen et al.

(2003), RMA was used after each analysis to scale the

resulting canonical variable to the units of the variable in

question, thus avoiding the biases associated with OLS
regression (Cohen et al., 2003). For the stepwise analyses in

this paper, scaling was not required, but RMA removes the

biases introduced by OLS regression.

The second analysis involved a second round of CCA to

relate residuals from each of the three regression analyses to

topography, climate (Daly et al., 1997) and soils (USDA,

1994). The use of CCA in this context avoided the inflation

of variance explained by the environmental variables that

would have occurred if all the environmental variables had

been included in the first set of regressions. Moreover, the

subsequent CCA allowed us to define important environ-

mental factors that influence the stand structure variables of

interest. Finally, the environmental canonical variables and

the lidar estimates of canopy structure were then used

together to estimate stand structure.
3. Results and interpretation

Due to the complexity of this multi-layered analysis,

initial interpretation of the results (e.g., the axes defined by

the canonical correlation analysis) will be presented along

with the results themselves. Higher-level analysis of the

results (e.g. the ecological significance of the particular

pattern of extracted axes) will be left for the Discussion.

3.1. Canonical correlation analysis

There were seven statistically significant pairs of canon-

ical variables from the dataset of lidar canopy structure

estimates and the corresponding dataset of forest stand

structure (Table 1). Canonical correlation coefficients (the

correlation between the pairs of canonical variables for the

two datasets) ranged from 0.99–0.79 (between 98% and

63% of variance in common). For the seven canonical

variables discussed, a test of the hypotheses that these and

all remaining canonical correlations were equal to zero was

rejected (Pb0.0001). Four multivariate tests and F test

approximations all rejected the null hypothesis that the

canonical correlations were zero (Pb0.0001).

Details of this analysis are presented in Lefsky et al. A

(in review), and will be summarized here (Table 2). The first

canonical variable, as expected, reflected the management

and disturbance history of each site, as reflected in positive

correlations with both field and lidar measured height, and

with aboveground biomass. The second canonical variable

was correlated with LAI, foliage cover, and the volume of

dimly lit space. The third pair of canonical variables was

correlated with the horizontal spatial variability in canopy

vertical structure, as indicated by positive correlations with

the statistics describing the standard deviation of various

height indices, and by a negative correlation with minimum

heights (because higher minimum heights decrease varia-

bility). The third pair of canonical variables was also highly

correlated with the basal area of deciduous trees. Canonical

variables 1–3 explained 84% of variance in the analysis.



Table 1

Canonical correlation analysis: canonical variable summary

Canonical

correlation pair

Canonical

correlation

Approximate

standard error

Squared canonical

correlation

Eigen value Percent of

variance

PrNF

1 0.99 0.00 0.97 37.6528 61% b0.0001

2 0.95 0.01 0.90 8.9713 15% b0.0001

3 0.91 0.02 0.83 4.7546 8% b0.0001

4 0.89 0.02 0.80 3.9206 6% b0.0001

5 0.83 0.03 0.70 2.2863 4% b0.0001

6 0.82 0.04 0.67 1.9934 3% 0.0008

7 0.79 0.04 0.63 1.6857 3% 0.0175

Multivariate statistics and F approximations

Statistics Value F Value Num DF Den DF PrNF

Wilk’s Lambda 0.00 2.84 486 688.77 b0.0001

Pillai’s Trace 8.57 1.95 486 1044 b0.0001

Hotelling–Lawley Trace 66.54 5.37 486 320.49 b0.0001

Roy’s Greatest Root 37.65 80.88 27 58 b0.0001
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Canonical variables 4 through 7 are statistically significant

but represent smaller fractions of the total variance in

common between the canopy and stand structure datasets.

Canonical variables 4, 6 and 7 are related to various

contrasts in the structural conditions associated with young,

mature and old-growth stands, such as the number of

waveforms greater than 55 m, the volume of shadowed

canopy, and the mean DBH of all stems. Canonical variable

5 is related to the proportion of deciduous and coniferous

basal area.

3.2. Regression analysis

3.2.1. Stepwise multiple regression using canopy structure

variables (direct stepwise)

Abridged results from 17 stepwise multiple regressions

(one for each dependent variable) are given in Table 3,

which contains the correlation coefficients between each of

the dependent and independent variables. The results of the

stepwise multiple regressions are indicated by highlighting

the variables selected by the stepwise analysis (and therefore

each column can be thought of as a summary of the

resulting equation). Adjusted R2 values from each equation

are indicated in the bottom row, and ranged from 0.0 for

natural log transformed density (ln Density) to 0.92 for

Aboveground Biomass (BIOMASS), with a median value of
Table 2

Summary of canonical pairs

Canonical variable Description of ecological significance

1 Total stand height, and related variables, such as ab

2 Cover euphotic and total canopy volume, leaf area

3 Canopy variability, deciduous basal area

4 Canopy vertical distribution, separates young and m

5 Canopy variability, increased minimum height, coni

6 Cover, mean DBH of all stems, stand density; sepe

7 Cover oligophotic canopy volume, correlates with m
0.76. Explanatory variables were evenly spread among the

four methods for the description of forest canopies: canopy

surface height measurements (each variable involved in an

average of 1.89 equations), canopy height profile measure-

ments (1.62), canopy transmittance indices (2.5), and

canopy volume indices (1.83).

3.2.2. Direct CCA using lidar estimated canopy structure

Abridged results from direct CCA (using CCA to predict

each of the stand structure variables directly from the lidar

indices of canopy structure) are presented in Table 4.

Correlations between the canopy structure variables and the

canonical variable resulting from each analysis are given in

the table. Correlations were higher than those in Table 3,

because (in this analysis) they were between the lidar

indices and the canonical variables, which were a function

of the original canopy structure indices. Grey values

indicated those variables which were considered statistically

significant in a stepwise multiple regression of each canon-

ical variable using the independent canopy variables. Again,

explanatory variables were more or less evenly spread

among the four methods for the description of forest

canopies: canopy surface height measurements (each

variable involved in an average of 7.1 equations), canopy

height profile measurements (10.7), canopy transmittance

indices (10.3), and canopy volume indices (7.7).
Lidar index with highest correlation

oveground biomass CHP_H_M2

index COVER_X

CHP_H_MIN

ature stands FILLED

ferous/deciduous balance. CHP_H_SD

rates mature and old-growth CHP_Q_SD

ature stands HGT55



Table 3

Pearson correlations between field measured stand structure and lidar measured canopy structure variables

Canopy Surface Height Indices
CHP_H_X 
CHP_H_X2 
CHP_H_M 
CHP_H_M2 
CHP_H_SD 
CHP_H_MAX 
CHP_H_MAX2 
CHP_H_MIN 
HGT55 

Canopy Height Profile Indices 
COVER_X 
CHP_MN_X 
CHP_MN_SD 
CHP_Q_X 
CHP_Q_X2 
CHP_Q_SD 
MNH_COV 
QMCH_COV 

Canopy Transmittance Indices    
TRANS_MN_X 
TRANS_MN_SD 
TRANS_P50_X 
TRANS_P50_SD 
TRANS_P98_X 
TRANS_P98_SD 

Canopy Volume Indices 
OPEN 
CLOSED 
EUPHOTIC 
OLIGO 
FILLED 
LCOMP 

Adjusted R2  

B
A

SA
L

0.82 
0.79 
0.81 
0.77 
0.33 
0.79 
0.78 
0.64 
0.51 

0.37 
0.75 
0.65 
0.76 
0.70 
0.72 
0.78 
0.79 

0.81 
0.60 
0.78 
0.66 
0.81 
0.37 

0.23  
0.65 
 0.63 
0.77 
 0.78 
 0.66 

0.76                 

B
IO

M
A

SS
 

0.91 
0.92 
0.90 
0.91 
0.41 
0.87 
0.89        
0.69 
0.66 

0.35 
0.85 
0.74 
0.86 
0.83 
0.80 
  0. 86 
0.87 

0.88 
0.72 
0.85 
0.77 
0.90 
0.43 

0.23  
0.78 
 0.69 
 0.79  
0.82 
 0.73 

 0.92               

C
O

N
IF

_B
A

0.75  
0.74 
0.75 
0.74 
0.37 
0.73 
0.73 
0.53 
0.52 

0.32 
0.64 
0.61 
0.65 
0.62 
0.70 
0.6  6 
0.68 

0.77 
0.59 
0.67 
0.67 
0.74 
0.41 

0.22  
0.62  
0.59  
0.64  
0.69 
 0.63 
  
0.67

C
O

V
E

R

0.55 
0.45 
0.53 
0.42 
0.03 
0.49 
0.43 
0.55 
0.21 

0.38 
0.55 
0.35 
0.57             
0.42 
0.40   
0.58 
0.59 

0.57 
0.25 
0.50 
0.32 
0.54 
0.06 

0.03 
 0.24 
 0.59  
0.61  
0.67  
0.38 
  
0.57         

D
B

H
M

A
X

 

0.84  
0.81 
0.84 
0.80 
0.59 
0.86 
0.85       
0.56 
0.52 

0.43 
0.71 
0.71 
0.71 
0.66 
0.76 
0.71 
0.72 

0.83 
0.78 
0.75 
0.79 
0.84 
0.63 

0.38 
 0.76  
0.61 
0.69  
0.72  
0.68  

0.82            

D
B

H
ST

D

0.84 
0.84 
0.85 
0.85 
0.61 
0.85 
0.86 
0.48 
0.62 

0.33 
0.73 
0.79 
0.74 
0.72 
0.85 
0.70 
0.72 

0.83 
0.81 
0.72 
0.86 
0.84 
0.65 

0.34 
0.80 
0.64 
0.60 
0.69 
0.71 

0.84

D
B

H
U

 

0.80 
0.80 
0.82 
0.81 
0.67 
0.83 
0.82 
0.44 
0.59 

0.43 
0.68 
0.71 
0.67 
0.68 
0.77 
0.66 
0.65 

0.79 
0.85 
0.71 
0.85 
0.81 
0.70 

0.37 
0.84 
0.53 
0.55 
0.60 
0.65 

0.82

D
B

H
X

0.67 
0.68 
0.66 
0.66 
0.20 
0.64 
0.64 
0.62 
0.58 

0.30 
0.72 
0.50 
0.70 
0.73 
0.45 
0.   69 
0.69 

0.59 
0.49 
0.68 
0.60 
0.67 
0.21 

0.15 
0.60 
0.51 
0.54 
0.58 
0.45 

0.52

D
E

N
SI

T
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3.2.3. Stepwise multiple regression using the canonical

variables (SCV)

Abridged results from the stepwise multiple regressions

of stand structure variables on the seven lidar-derived canopy

structure canonical variables are presented in Table 5. Grey

values indicate those independent canonical variables which

were considered statistically significant in the stepwise

multiple regression prediction of each dependent canopy

variable. Canonical variables 1 and 2 were used in 15 and 14

(respectively) of the equations predicting 17 stand structure

indices. Plotting the correlation between the stand structure

variables and each of the first two canonical variables (Fig.

1) created an ordination diagram indicating which variables

were more closely related to either stand height or cover.
Examination of this diagram indicated that there were

four clusters of variables. The first cluster consisted of those

variables that were correlated with canonical variable 1

(height), but not with canonical variable 2 (cover). These

included the mean DBH of all stems and the number of

stems greater that 100 cm in diameter. The second cluster

had high correlation with the first canonical variable and

moderate correlations with the second canonical variable.

This cluster included a number of DBH-related indices

(mean DBH, mean dominant and co-dominant DBH,

standard deviation of DBH, max DBH, and the number of

stems greater than 100 cm), as well as aboveground

biomass, total and coniferous basal area, and Lorey’s and

maximum height.



Table 4

Pearson correlations between canopy structure variables and each stand structure canonical variable (CV)
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The third cluster encompassed density, cover and LAI,

which were most highly correlated with canonical

variable 2, which indicates high values of lidar-measured

variables related to cover. Of these variables, LAI has

the higher correlation with the first canonical variable

(related to height), which indicates that LAI is dependent

on both cover and canopy height, as indicated in Lefsky

et al. (1999a). The fourth and final cluster consists of

one variable, the basal area of deciduous species, which

had very low correlation to the first two canonical

variables, but has a high correlation to the third

canonical variable, as explained earlier and in Lefsky

et al. (in Review).
3.2.4. Addition of environmental variables to regressions

Environmental factors were analyzed by creating two

datasets of residuals; one from each of the estimates of stand

structure (i.e. one from the direct CCA and a second from

the SCV). CCA was then performed on each data set with

the residuals as the dependent values and environmental

data as the independent variables. In both cases, two pairs of

canonical variables were found to be significant. Table 6a

indicates which environmental variables contributed signifi-

cantly to each of the environmental canonical variables. For

the SCV, the first environmental variable was strongly

related to the continentality of precipitation, the annual,

minimum, summer, and winter temperature variables, the



Table 5

Correlations between the stand structure and the canonical variables of the lidar indices. Grey boxes indicate variables picked in stepwise regression of canopy

structure predicted from lidar canonical variables
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Fig. 1. Ordination diagram of stand structure variables plotted as a function

of their correlation with canonical variables 1 and 2. Numbers identify

clusters described in text.

M.A. Lefsky et al. / Remote Sensing of Environment 95 (2005) 532–548 539
variability of precipitation and temperature, and the depth of

soil, while the second environmental variable was weakly

related to increasing elevation and related effects. For the

direct CCA analysis, the first two environmental variables

partitioned the variance explained by the SCV’s first

environmental variable. In this case, the first canonical

variable was related to continentality and variability of

precipitation, while the second canonical variable was

related to temperature and elevation.

A number of stand structure indices had high correlations

with the environmental variables (Table 6b). However,

running the SCV regression analysis with the environmental

variables showed (Table 7) that they made a meaningful

improvement in just 1 equation: stem density (CV-2). In the

direct CCA analysis, environmental variables were added to

just two equations (stem density and LAI) and were a

substantial improvement over direct CCA with canopy

structure variables alone.

3.2.5. Regression method comparison: All sites

Table 7 compares the estimates produced by each of five

regression methodologies: direct stepwise multiple regres-

sion (direct stepwise), direct canonical correlation analysis

(direct CCA, with and without environmental variables),

and stepwise multiple regression using canonical variables

(SCV, with and without environmental variables). Equa-

tions were evaluated on the basis of two key statistics: the

adjusted R2 and the ratio of the root mean square error to

the mean predicted value for each dependent value. For

each statistic, the value obtained using direct stepwise

multiple regression was treated as a reference value and

results for the other analyses were presented in terms of

their improvement over the reference value (improvement

in R2 is positive; for RSME lower values are desirable, so
improvement in RMSE is negative). In most cases, these

improvements were marginal when compared to the direct

stepwise result; the average improvement in R2 was just

0.06 and 0.09 for direct CCA estimation with or without

environment, and 0.11 for SCV with or without environ-

ment. The average improvements in the ratio of RMSE to

the mean predicted value were similar, except that the

direct CCA method with environment was an improvement

over direct CCA with canopy structure variables alone, and

slightly better than either SCV result. However, these

values were to some extent due to lower correlations and

higher RMSE values for variables such as LAI and

density. If the 9 equations where the stepwise regression

explained less than 80% of variance were excluded, then

the improvements in R2 decreased to 0.0 and 0.01 for



Table 6

Correlations between canonical environmental factors 1 and 2 derived from both stepwise with direct CCA and SCV methods, with both (a) environmental and

(b) stand structure indices

SCV

Environment 1

SCV

Environment 2

Direct CCA

Environment 1

Direct CCA

Environment 2

(a)

XX �0.57 0.23 �0.28 0.38

YX �0.53 0.13 �0.16 0.32

ANNPRE 0.34 �0.22 0.09 0.02

WTRPRE 0.43 �0.26 0.15 �0.06

SMRPRE 0.03 �0.04 �0.11 0.30

CVPRE 0.79 �0.32 0.41 �0.44

CONTPRE �0.79 0.36 �0.47 0.41

ANNTMP 0.71 �0.23 0.23 �0.50

MAXTMP 0.35 0.02 0.09 �0.29

MINTMP 0.63 �0.25 0.19 �0.40

WTRTMP 0.65 �0.25 0.21 �0.46

SMRTMP 0.73 �0.16 0.22 �0.51

CVTMP �0.49 0.24 �0.15 0.32

AWC 0.24 �0.04 0.30 0.23

DEPTH �0.85 0.16 �0.36 0.32

SLOPE �0.09 0.18 �0.11 0.32

ASPECT �0.09 0.09 0.16 �0.10

ELEVATION �0.58 0.35 �0.10 0.51

(b)

BSC �0.01 �0.05 0.25 0.14

BASAL �0.04 0.07 0.16 �0.05

LAI 0.10 �0.03 0.37 0.16

HTMAXM 0.00 0.07 0.30 0.23

LOREY 0.11 0.18 0.06 0.24

NT100CM 0.25 0.26 0.38 0.09

DBHU 0.06 0.33 0.11 0.12

DBHSTD 0.14 0.23 0.15 �0.02

HTMAX �0.04 0.33 0.03 0.14

HTDCD 0.04 0.24 0.12 0.17

COVER 0.00 0.03 0.07 0.26

DENSITY �0.26 �0.33 �0.40 �0.08

LNDENSIT �0.05 0.15 �0.14 0.03

DBHMAX �0.02 0.20 �0.15 0.12

DBHX 0.16 0.08 0.08 0.08

DECID_BA 0.32 �0.21 �0.16 �0.16

CONIF_BA 0.00 0.18 0.26 �0.02

These factors are based on residuals from the CCA and SCV predictions of the stand structure indices. Bold numbers indicate top 25% correlations of stand

structure indices with each canonical variable. Environmental variables are defined in Appendix I, Lefsky et al. (2005).
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direct CCA (with and without environmental variables

respectively) and 0.01 and 0.03 for analyses using SCV. In

terms of this analysis of the entire dataset, both direct CCA

estimation and SCV showed marginal improvement over

stepwise multiple regression, and their results were very

similar to each other.

3.2.6. Regression method comparison: Individual study

areas

In addition to analysis of the equations predicting stand

structure across the entire study region, analysis of the

properties of the equations for each study area was also

necessary. However with 5 areas, 4 methods, and 17

variables, describing all 340 of these equations would be

prohibitively time-consuming. Therefore only summary
statistics will be discussed. Table 8 provides average values

for 9 statistics describing the performance of the methods in

the five study areas.

To evaluate the applicability of the regression equations

created using data from all study areas to each individual

study area separately, regressions (with associated slopes

and intercepts) for each area were calculated between the

predictions from the overall regressions versus the

observed values for each area. These results indicated that

the direct CCA approach led to a smaller average deviation

from the ideal value (1.0), but that a larger proportion of

these site slopes significantly differed from zero. Further

examination of equation slopes as a function of method

and area indicated that most of the variability in equation

slope (and the proportion of slopes significantly different



Table 7

Comparison of estimation methods

Stepwise

Adj. R2

Change in

R2 with

direct CCA

estimation

Change in

R2 with

direct CCA

estimation

with climate

Change in

R2 with

SCV

Change in

R2 with

SCVE*

Stepwise

RMPV

Change in

RMPV with

direct CCA

estimation

Change in

RMPV direct

CCA

estimation

with climate

Change in

RMPV

with SCV

Change

in RMPV

with SCVE*

BASAL 0.76 0.05 0.05 0.12 0.12 0.30 0.01 �0.07 �0.10 0.10

BIOMASS 0.92 �0.03 �0.02 0 0 0.26 0.01 �0.05 �0.07 0.07

CONIF_BA 0.67 0.14 0.16 0.21 0.21 0.40 0.02 �0.14 �0.16 0.16

COVER 0.57 0.04 0.1 0.10 0.10 0.22 0.02 �0.04 �0.03 0.03

DBHMAX 0.82 �0.01 0.01 �0.01 �0.01 0.23 0.01 �0.02 0.01 �0.01

DBHSTD 0.84 0.01 0.02 0.04 0.04 0.24 0.00 �0.03 �0.02 0.03

DBHU 0.82 0.03 0.04 0.02 0.03 0.24 0.00 �0.04 �0.01 0.02

DBHX 0.52 0.08 0.1 0.13 0.13 0.47 0.06 0.88 1.15 �1.15

DECID_BA 0.61 �0.06 �0.02 �0.11 �0.11 1.39 0.17 �0.46 �0.41 0.47

DENSITY 0.05 0.27 0.42 0.41 0.48 1.32 0.00 �1.16 �1.16 1.17

HTDCD 0.84 0.01 0.02 0.05 0.06 0.19 0.00 �0.03 �0.05 0.06

HTMAX 0.85 �0.04 �0.03 0.04 0.04 0.16 0.01 �0.03 �0.03 0.03

HTMAXM 0.87 0.01 0.03 0.04 0.04 0.17 0.03 0.10 0.07 �0.07

LAI 0.5 0.15 0.21 0.31 0.31 0.38 0.00 �0.23 �0.22 0.22

LNDENSITY 0 0.34 0.37 0.41 0.41 0.00 0.00 0.00 0.00

LOREY 0.9 0 0.01 0.06 0.06 0.14 0.01 �0.02 �0.05 0.05

NT100CM 0.76 0.03 0.07 �0.02 0.01 0.68 0.05 �0.16 0.01 0.03

Average 0.66 0.06 0.09 0.11 0.11 0.43 0.02 �0.09 �0.06 0.07

Average for

R2 valuesN0.8

0.86 0.00 0.01 0.03 0.03 0.21 0.01 �0.01 �0.02 0.02

SCVE is SCV with Environmental variables; RMPV is RMSE/MPV. MPV is Mean Predicted Value. R2 values are bootstrapped.

M.A. Lefsky et al. / Remote Sensing of Environment 95 (2005) 532–548 541
from 1) is due to the Mt. Rainier site. Site intercepts (same

as above but with the intercept of predicted vs. observed)

follow a similar pattern, with the direct CCA approach

having an average intercept closer to zero at all areas, but

with the SCV resulting in intercepts that are up to 7% of
Table 8

Summary statistics for equation performance at individual sites

Individual

location

slopes

Fraction of

location slopes

significantly

different

from one

Ratio of

individual

location

intercepts

to mean

value

Fraction of

location intercepts

significantly

different

from one

R2_

Stepwise 1.07 0.27 0.01 0.33 0.85

Direct CCA 1.03 0.17 �0.02 0.23 0.88

Direct CCA

w/ climate

1.03 0.20 �0.02 0.25 0.88

Swise w/

Canonical V.

1.06 0.13 �0.07 0.17 0.88

Swise w/ CV

and climate

1.05 0.13 �0.05 0.19 0.87

Final 1.04 0.30 �0.30 0.09 0.89

Notes:

1. Individual location slopes: The average slope of the regressions between value

should be equal to 1.

2. Fraction of location slopes significantly different from one: The fraction of the s

and observed values for each location) that are significantly different from one sh

3. Ratio of location intercepts to mean value: The intercepts of the regression bet

divided by the mean predicted value, should be equal or close to zero.

4. Fraction of location intercepts significantly different from one: The fraction of

equation and observed values for each site) that are significantly different from z

5. R2_ratio: The average ratio of each location’s bootstrapped r2 values to overal

6. Four variables were excluded from this analysis, due to their low R2 values: D
the mean predicted value. However, the methods had

roughly the same number of equations with intercepts that

are significantly different from 0, indicating the larger

intercepts were still within the 95 percent confidence

intervals.
ratio Ratio of variance

of predictions

and observations

RMSE as a

percentage of

Mean Predicted

Value

Average site

RMSE as

fraction of

overall RMSE

Ratio of bias

to Mean

Predicted Value

1.06 28.60% 0.980 �3.30%

1.02 24.12% 1.037 �1.48%

1.03 22.95% 1.046 �1.18%

0.92 22.79% 1.030 0.72%

0.92 22.36% 1.033 0.83%

0.96 22.00% 1.038 0.10

s predicted by all�location equation and observed values for each location

lopes (for the regression between values predicted by all�location equation

ould be equal or close to zero.

ween values predicted by all�location equation and observed values, when

the intercepts (for the regression between values predicted by all�location

ero should equal or close to zero.

l bootstrapped r2 value.

ensity, LnDensity, NT100CM, and DECID_BA.
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The R2 ratio indicates the average ratio between area R2

values and the overall equation’s R2 value; ideally it would

be 1. When averaged over all areas, values for this statistic

ranged between 0.85 and 0.88, indicating reasonable

performance for all methods. Examination of area and

method differences in this statistic demonstrated that there

were area differences in the R2 ratio. Specifically, HJA

had an average R2 ratio of 1.195, while values for

Cascade Head (0.95), the Coastal Plots (0.85), and Rainier

(0.9) approximated the overall value of 0.85, and Metolius

was uniformly the lowest (0.65). While this may reflect

differences in the intrinsic strength of the relationship

between canopy and stand structure variables, it also

reflected differences in the characteristics of these

particular datasets, particularly the number of plots and

range of values recorded in each set of stand variables.

Examination of each area’s RMSE as a percentage of

the mean predicted value indicated that three techniques

(Direct CCA with environment, and SCV with and

without environment) all have average values within less

than 23% of the mean predicted value; the other two

methods showed less precision in their predictions.

Examination of this variable as a function of area and

method indicated that one site (Cascade Head) had the

lowest value for this variable (15%), while three sites

(Coast Range, H.J. Andrews, and Rainier) had values

approaching 25%. The Metolius area showed both area

and method effects; on average the methods had values

averaging 27% but the direct CCA methods had much

higher values than those obtained with SCV, approaching
Table 9

Final models

Variable Method Bootstrapped

Adj R2

Number of

sites with

slopes

significantly

different

from one

Number of

sites with

intercepts

significantly

different

from zero

R

BIOMASS SCV 0.92 0 0

DBHMAX Direct CCA

w/Environment

0.83 0 0

DBHSTD Direct CCA 0.85 0 0

DBHU SCV 0.84 0 0

HTDCD SCV 0.89 0 0

HTMAX SCV 0.89 0 0

LAI SCV 0.81 0 0

NT100CM Direct CCA 0.79 0 0

BASAL Direct CCA 0.81 0 1

CONIF_BA Direct CCA 0.81 0 1

DBHX SCV 0.65 1 0

DECID_BA Direct CCA 0.55 2 0

DENSITY SCV

w/Environment

0.53 1 1 9

LNDENSITY SCV 0.41 1 1

LOREY SCV 0.96 1 1

COVER SCV 0.67 2 1

HTMAXM SCV 0.91 1 2
35% of the mean predicted values. The lower values at

Cascade Head were due to the low number of younger

stands found at that site, which increased the mean

predicted value of most stand structure indices, and

lowered the ratio of RSME to mean predicted value. The

opposite effect may have occurred at Metolius—where

stands were shorter and therefore the mean predicted

values were relatively small. If the RMSE remains

constant, then the RMSE/average predicted ratio will be

large. This effect also applied to measurement error; a 1

m error in the lidar or field estimate of stand height

would have a larger effect here than at Cascade

Head.

Variance ratio and percent bias are both indicators of

the ability of each method to preserve key qualities: the

total variance and absolute values of the observed datasets.

The method averages for these variables indicate that

method had the most influence on these parameters. The

direct CCA method resulted in higher variance ratios and

negative biases, while the SCV methods resulted in lower

variance ratios and positive biases. While the actual values

involved indicate relatively small deviations from ideal

values, it is instructive that each method has these

distinctive patterns. Examination of these variables indi-

cates that a combination of area and method effects is at

work. A single area (Metolius) was the largest contributor

of bias, with both SCV methods resulting in positive bias

of 7.5% from the mean values, while the direct CCA

methods resulted in a negative bias of -6%. Method is

another contributor of variance; direct CCA results in
MSE RMSE (%) Bias (%) Ratio of

variances

Mean

Predicted

Value

Sites with

slopes or

intercepts

Significantly

different

from zero

89.04 19.55 0.00 0.9626 455.56

20.99 21.33 0.15 1.0004 98.42

4.41 21.55 �0.01 1.0005 20.45

12.34 22.56 0.00 0.9234 54.69

4.75 15.89 0.00 0.9465 29.87

6.47 14.08 0.00 0.9435 45.94

1.53 23.76 0.00 0.8932 6.45

7.45 57.18 0.06 0.9998 13.03

13.85 23.96 �0.62 0.9978 57.80 Metolius

14.75 28.18 �0.79 0.9989 52.34 Metolius

10.61 39.81 0.00 0.8181 26.65 Rainier

7.65 141.67 1.36 0.9797 5.40 HJA,Metolius

96.97 91.49 0.00 0.7415 1089.67 Coast Range

1.06 16.61 0.00 0.6241 6.36 HJA,Metolius

2.90 9.31 0.00 0.9799 31.16 Metolius

0.13 18.46 0.00 0.8226 0.71 Coast Range,HJA

5.26 13.15 0.00 0.9572 40.02 Cascade Head
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variance ratios that were ~1% above the results obtained

using SCV at every area.

3.2.7. Equation selection

A comparison of the regression methods permits a few

generalizations. First, both direct CCA and SCV slightly

out-performed direct stepwise multiple regression in terms

of variance explained and the R2 ratio (Table 8). Large

improvements were seen in RMSE as a percentage of

mean predicted value and the fraction of equations with

slopes or intercepts that significantly differed from 1 or 0,

respectively. Secondly, both direct CCA and SCV per-
Fig. 2. Scatterplots of predicted vs. ob
formed similarly with respect to variance explained and

root mean squared error. SCV outperformed direct CCA to

a modest degree, especially with respect to slope, intercept,

and bias.

In these tables, performance of each regression method

was discussed with regard to their overall performance,

and not the individual variables in question. However for

final selection of regression equations, a different approach

was used, specifically designed to pick the best equation

for each variable. Two steps were involved. For each

variable, the equation or equations with the least number

of statistically significant site level deviations from the
served stand structure variables.



Fig. 2 (continued).
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overall equation were selected. Second, adjusted R2 values

for these sites were compared, and the equation with the

maximum R2 was selected. If two equations had the same

fractional R2 (to 2 decimal places when expressed as a

fraction), then equations without environmental data were

preferred over those with environmental data. This rule

allowed us to select an equation in each instance (Table 9,

Fig. 2). In nine of seventeen cases, the equation was

developed using SCV; five were developed with direct

CCA, two were developed with SCV with environmental

data, and 1 was developed with direct CCA with environ-
mental data. Statistics by location for the combined dataset

are presented in Table 9.
4. Discussion

4.1. Methods

The choice of methods to test for this study reflected a

range of goals. Stepwise multiple regression was picked to

represent the methods used in previous lidar papers (e.g.
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Lefsky et al., 1999a,b, 2002). CCA using multiple

independent variables and a single dependent variable is

the method described in Cohen et al. (2003). In this work we

were concerned with evaluating multivariate independent

and dependent datasets, understanding the redundancy

within each dataset, as well as estimating dependent

variables. Combining these two goals, a third analysis

approach (SCV), using stepwise multiple regression to

predict dependent variables (i.e. stand structure) from

canonical variables derived from the independent dataset

(i.e. canopy structure), seemed to have a number of

advantages. First, because the canonical variables were

uncorrelated, the problem of using collinear variables in

stepwise multiple regression was eliminated. The use of the

canonical variables increased interpretability, as all collinear

variables were considered in a single canonical variable and

could be interpreted as contributing to the canonical variables

in accordance with their correlation with them. This removed

the problem encountered when multiple variables with

similar correlation coefficients and F scores are available,

but only one can be entered into a stepwise regression. This

could easily lead to over-interpretation of the particular

variables picked by the stepwise multiple regression, when

other variables may be almost equally suitable.

It could be argued that, rather than using stepwise

multiple regression to combine the canonical variables, a

second CCA step could be used to combine the original

canonical variables into estimates of the dependent varia-

ble—in essence performing the analysis of Cohen et al.

(2003) using canonical variables in the place of the original

variables. In this case, having created uncorrelated canonical

variables, the capacity of stepwise regression to remove

(from the regression equation) those variables that did not

contribute to the estimation of the dependent variable was a

decided advantage over the potentially ambiguous methods

available to ascertain the contribution of independent

variables used in CCA.

Summary statistics for the entire study area (Table 7)

were useful for indicating the relative performance of

different regression techniques, but masked the performance

of each method at different sites (Table 8). Although the

statistics reported in Table 8 give a reasonable representa-

tion of the performance of each method at individual sites,

analysis of equation performance required a combination of

graphical (box plot) and statistical (ANOVA) techniques,

which proved cumbersome.

4.2. Variable selection

In contrast to the results of Lefsky et al. (1999a), in

which canopy volume variables accounted for most of the

independent variables picked in a stepwise regression,

explanatory variables were evenly spread among the four

methods for the description of forest canopies: canopy

surface height measurements (each variable involved in an

average of 1.89 equations), canopy height profile measure-
ments (1.62), canopy transmittance indices (2.5), and

canopy volume indices (1.83). This may be due to the

inclusion of the canopy transmittance indices, which were

not considered in Lefsky et al. (1999a), and which may

capture much of the variance previously captured by the

canopy volume indices.

4.3. Equation generality

Of the 17 stand structure variables considered in this

paper, we were able to develop eight equations that were

valid for all sites, including equations for two variables

generally considered as highly important aboveground

biomass and leaf area index. The other six equations that

were valid for all sites were either related to height (which is

most directly measured by lidar) or DBH (which should be

closely related to height).

It is noteworthy that aboveground biomass and leaf area

index were consistently predictable along a productivity and

species composition gradient from the true fir forests of Mt.

Rainier to Ponderosa pine forests at Metolius, and at the

high productivity forests of Cascade Head, the coast range,

and H.J. Andrews. This result offers a regional confirmation

of the continental-scale hypothesis offered in Lefsky et al.

(2002), in which the geographic generality of an equation

predicting aboveground biomass was demonstrated. While

the range of environmental conditions and composition

examined in this paper is narrower than in Lefsky et al.

(2002), the number of site locations examined is larger, and

thus confirms the result for the Pacific Northwest region of

the USA.

Of the nine equations that could not be generalized to

all sites, four (basal area, conifer basal area, mean DBH of

all stems, and Lorey’s height) failed at either Metolius or

Mt. Rainier, the sites having the most extreme differences

in terms of composition, stand structure, and environ-

mental conditions. Therefore, these variables were valid for

the remaining locations, and probably for the stands of

Douglas-fir/western hemlock and Sitka spruce/western

hemlock in the Coast Range and western slopes of the

Cascades in general. For these areas, we had a total of 12

equations that were applicable. In addition, the equation

for deciduous basal area failed at H.J. Andrews and

Metolius, two sites with deciduous basal area less than 1.0

m2 ha-1. It is possible that a more successful method for

estimating deciduous basal area could be created using a

combination of conventional optical remote sensing to

detect the presence of deciduous trees (e.g. Maiersperger et

al., 2001), and lidar to estimate their basal area.

One aid to investigating the potential generality of

equations relating canopy and stand structure can be found

in the forestry literature’s site and yield tables. Site index

tables relate stand age to the mean height of dominant and

co-dominant trees—a standard index of productivity. Yield

tables indicate the expected volume of a stand for a given

stand age. Site index and yield tables both have high



M.A. Lefsky et al. / Remote Sensing of Environment 95 (2005) 532–548546
variability due to productivity effects on the relationship of

age to the height and yield variables. However, when mean

height and yield are compared, the resulting relationships

are free of most productivity and species effects (Fig. 3A

and B), despite the fact that a relatively simple height index

is being used. The fact that the yield variable is more

consistent, as a function of productivity and composition,

than either the mean diameter or basal area variables (also

standard variables included in site index and yield studies,

Fig. 3c and d), is consistent with the equations developed

from our datasets. The site index and yield literature has a

number of drawbacks including: only average and/or

regressed values are reported for the variables of interest,

the variables reported (e.g. yield) are not perfectly correlated

with the variables of interest (e.g. aboveground biomass),

and the low range of tree heights and yields. Nevertheless,

they can be a useful tool to identify potential difficulties in

developing equations for stands with varying composition

and productivity, and have been an accurate indicator of

generality in our experience.

4.4. Environmental variables

Of the 6 final equations (Table 9) that explained less than

80% of variance (and which may be expected to leave

considerable room for model improvement), only density

was substantially improved by adding the environmental

canonical variables as part of the model. Stem density should
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be partially controlled by productivity, and therefore the

inclusion of environmental variables makes sense. However,

equations for the number of stems greater than 100 cm, and

the mean DBH of all stems might also be expected to have a

productivity component, but environmental variables did not

have a substantial effect on these equations. For variables

such as aboveground biomass and cover, it is reasonable to

suggest that, given the high percentage of variance explained

and direct physical relationship between dependent and

independent variables, environmental variables would not

contribute to the final equations. It is reasonable to

hypothesize that there exist other direct linkages between

the lidar measurements and many of these variables, which

obviate the need for environmental effects.

Environmental effects may have been masked by the

large range of stand structures included in this study. To

check for this effect, the residuals for every variable were

normalized separately by dividing them by the predicted

value from the final model, and stepwise multiple regres-

sions were run between environmental variables and the

normalized residuals from each variable separately.

Although there was a moderate chance of inflated results,

predicting 17 variables from 18 independent variables with

86 cases, this analysis was meant to detect any possible

environmental effects, and therefore this was considered an

acceptable risk. Of the 17 dependent variables, in 10 cases

the stepwise multiple regressions found no significant

relationship, for an additional 6 cases the regressions
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explained between 4% and 8%, and in one case the

regression explained 15% of variance. Taking the last case,

the variable being considered was maximum height

(HTMAX) whose regression from the lidar canopy structure

indices had already explained 89% of variance. Therefore,

the 15% of variance in the normalized residuals could

represent no more than 2.65% (0.15 * (1.0–0.89)) of the

overall relationship between canopy structure, environment

and the stand structure variable. This confirms the earlier

conclusion that environment did not play a significant role

in these relationships.
5. Conclusions

Previous studies have demonstrated the strong relation-

ship between lidar measurements of canopy structure and

indices of forest stand structure. Only one study (Lefsky et

al., 2002) has attempted to test the generality of these

relationships over multiple sites, and multiple forest cover

types. Whereas Lefsky et al. (2002) were successful at

developing a unified equation for predicting aboveground

biomass in multiple biomes (Temperate Deciduous Broad-

leaf, Temperate Coniferous Needleleaf, Boreal Coniferous

Needleleaf), there was no replication in each biome. In this

work, we were able to look at 5 sites within the Temperate

Coniferous Needleleaf biome, using sites with varying

environment and composition.

We were able to create equations that predicted stand

structure variables (e.g. aboveground biomass and LAI)

across an environmental and compositional gradient that

included open-canopy ponderosa pine on the east side of

the Cascade range, Sitka spruce/western hemlock at

Cascade Head, and true fir forests at Mt. Rainier. Given

this wide range of conditions, and the earlier result of

Lefsky et al. (2002) which included black spruce (Picea

mariana), it is reasonable to ask if, in forests dominated by

coniferous species, tree architecture is constrained to the

point where a unified relationship between lidar measure-

ments and stand structure might exist for these forests

generally.

In existing studies of this type (including this one) there

has been an attempt to have a structural or temporal

sequence of stands at one or more study locations. This

study found broad consistency in lidar-stand structure

relationship over this region, and a relative lack of

importance of environmental conditions. Therefore, it is

likely that a modified sample design, in which plots with a

range of structures or ages are distributed throughout a

region or continent (without attempting to have complete

sequences in every forest type), would be successful. In this

type of study, analysis of residuals by forest type, and

testing for the importance of environmental conditions

would be used. Further analysis of this dataset will provide

some guidelines for this type of study, which will be less

plot intensive, and therefore, less expensive.
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